#저장용
######binary
model_list<-list()
for(i in 1:10){
ss<-sample(1:length(nlab),length(nlab)*1,replace = T)
library(lightgbm)
params <- list( objective = "binary", metric = "AUC",nrounds=800, depth=4, leaves=30, col_sample=0.8,
row_sample=0.8, learn_rate=0.015)
table(lab[sam])
dtrain <- lgb.Dataset(rbind(tr3[ss,]),label=nlab[ss])
dvalid <- lgb.Dataset(rbind(tr3[-ss,]),label=nlab[-ss])
valids <- list(test = dvalid)
model2 <- lgb.train(params,
dtrain,100,valids,
eval_freq = 10,
# device="gpu",
# gpu_platform_id = 1,
# gpu_device_id = 0,
learning_rate = 0.002,
early_stopping_rounds =100)
model_list[[i]]<-model2
cat("\n",i)
}
#########multiclass
dtrain <- lgb.Dataset(data = train[as.numeric(ti2),],label =(train_y)[as.numeric(ti2)])
dvalid <- lgb.Dataset(data = train[as.numeric(ti),],label =train_y[as.numeric(ti)])
valids <- list(test = dvalid)
params <- list(objective="multiclass", metric="multi_error",num_class =9)
model <- lgb.train(params, dtrain, 100, valids, min_data = 5,depth=16, leaves=300, col_sample=0.8,
row_sample=0.8, learning_rate = 0.15, early_stopping_rounds = 10,eval_freq = 50)
vy<-model$predict(((train[as.numeric(ti),])))
vy2<-matrix(vy,ncol=ul,byrow=T)
pred<-apply(vy2,1,which.max)
rs<-sum((pred-1)==(train_y)[as.numeric(ti)])/length(pred);rs
#############regression
library(lightgbm)
dtrain <- lgb.Dataset(data = as.matrix(data[sam,-ncol(data)]), label = data$y[sam])
dvalid <- lgb.Dataset(data =as.matrix(data[-sam,-ncol(data)]), label = data$y[-sam])
valids <- list(test = dvalid)
params <- list(objective = "regression_l2", metric = "l2" )
model <- lgb.train(params, dtrain, 500, valids, min_data = 5,depth=16, leaves=300, col_sample=0.3,eval_freq = 20,
row_sample=0.5, learning_rate = 0.1, early_stopping_rounds = 10)
# model <- lgb.cv(params, dtrain, 500, nfold = 5, min_data = 5,depth=4, leaves=10, col_sample=0.3,eval_freq = 20,
# row_sample=0.5, learning_rate = 0.15, early_stopping_rounds = 10)
pr<-predict(model,as.matrix(data[-sam,-ncol(data)]))*1
인프런 강의 할인 쿠폰 코드입니다.
R로 하는 웹 크롤링 - 입문편(할인쿠폰코드) 236-69fc51d93a53
https://www.inflearn.com/course/R-crawling#
R로 하는 웹 크롤링 - 실전편 (할인쿠폰코드) 237-55c672aeb038
https://www.inflearn.com/course/R-crawling-2#
R로 하는 텍스트마이닝 (Top keyword부터 감성분석까지) (할인쿠폰코드) 238-c86096730061
https://www.inflearn.com/course/R-text-mining#
R로 무작정 해보는 data science (할인쿠폰코드) 310-c6164f3d9be9
https://www.inflearn.com/course/R-%EB%8D%B0%EC%9D%B4%ED%84%B0%EC%82%AC%EC%9D%B4%EC%96%B8%EC%8A%A4-%EB%9D%BC%EC%9D%B4%EB%B8%8C%EC%BD%94%EB%94%A9#
'R-기타' 카테고리의 다른 글
R에서 Keras 설치하기 (0) | 2018.05.01 |
---|---|
Matrix에서 행별로 다른 칼럼에 있는 data가져오기 (0) | 2018.04.27 |
LightGBM 설치하기 (5) | 2018.04.22 |
Matlab imgae 파일 R로 불러들이기 (0) | 2018.04.12 |
R기초 코드 (0) | 2018.04.04 |
댓글